In this paper, a novel metal plasmon coupled with an aptamer-nucleotide hybridized probe was fabricated and applied for protein detection. The specific aptamer and single-strand oligonucleotide were chemically bound to silver nanoparticles (AgNPs), and Cy5-labeled, complementary single-strand oligonucleotides were hybridized with the particle-bound oligonucleotides. The hybridized DNA duplexes were regarded as rigid rods that separated the fluorophore Cy5 and the surface of AgNPs to reduce the competitive quenching. Using a model system comprising human immunoglobulin E (IgE) as the analyte and goat antihuman IgE as immobilized capture antibody on glass slides, we demonstrate that the detection performance of the synthetic probe was superior to the aptamer-based fluorescent probes. The results showed a good linear correlation for human IgE in the range from 10 ng/ml to 6.25 μg/ml. The detection limit obtained was 1 ng/ml, which was 50 times lower than that using Cy5 oligonucleotide/aptamer hybrid duplex (Probe2) due to the metal-enhanced fluorescence effect. This new strategy opens the possibility for the preparation of high-sensitivity detection probes based on metal nanoparticles.