Dairy cream is shown to be a simple, inexpensive, isotropic phantom useful for testing diffusional kurtosis imaging data acquisition and postprocessing. The MR-visible protons of cream exhibit slow and fast diffusion components, attributed to the fat and water protons, respectively, which give rise to a diffusion coefficient of 1.1 μm(2)/ms and a diffusional kurtosis of 1.2. These parameter values are similar to those observed in vivo for human brain. Heating the cream is found to increase the T(2)-relaxation time of the fat protons, which facilitates the evaluation of typical diffusional kurtosis imaging protocols used in clinical settings. The diffusion coefficient and diffusional kurtosis can both be measured directly and predicted based on the corresponding diffusion parameters of the individual water and fat components, which are independently measurable due to chemical shift misregistration, thus providing an important consistency check. This phantom is proposed as a convenient calibration standard for multicenter diffusional kurtosis imaging studies.
Copyright © 2011 Wiley Periodicals, Inc.