Macrocyclic natural products are a powerful class of lead-like chemical entities. Despite commonly violating Lipinski's "rule of 5", these compounds often demonstrate superior drug-like physicochemical and pharmacokinetic attributes when compared to their acyclic counterparts. However, the elaborate structural architectures of such molecules require rigorous synthetic investigation that complicates analogue development and their application to drug discovery programs. To circumvent these limitations, a conformation-based approach using limited SAR and molecular modeling was implemented to design simplified analogues of trienomycin A, in which the corresponding analogues could be prepared in a succinct manner to rapidly identify essential structural components necessary for biological activity. Trienomycin A is a member of the ansamycin family of natural products that possesses potent anticancer activity. These studies revealed a novel trienomycin A analogue, monoenomycin, which manifests potent anticancer activity.