Aim: Rho-kinase plays a critical role in various cellular functions. p38 mitogen-activated protein kinase (p38 MAPK) plays a central role in the inflammatory cytokine response to immune challenge. We evaluated the effects of a combination of fasudil, a Rho-kinase inhibitor, and FR167653, a p38 MAPK inhibitor, on cardiovascular remodeling, inflammation, and oxidative stress in Dahl salt-sensitive hypertensive (DS) rats.
Methods: DS and Dahl salt-resistant (DR) rats were fed a high-salt diet at 6 weeks of age. Vehicle, fasudil (100 mg/kg per day), FR167653 (2 mg/kg per day), and a combination of fasudil and FR167653 were administered to 6-week-old DS rats for 5 weeks.
Results: At the age of 11 weeks, in the left ventricle, DS rats were characterized by increased myocardial fibrosis, phosphorylation of p38 MAPK, and myosin phosphatase targeting subunit (MYPT-1), and NAD(P)H oxidase p22(phox), p47(phox), gp91(phox), tumor necrosis factor-α and interleukin-1β expression compared with DR rats. Fasudil improved cardiovascular remodeling, inflammation, NAD(P)H oxidase subunits, and phosphorylation of p38 MAPK and MYPT-1. FR167653 also similarly ameliorated these indices but not MYPT-1 phosphorylation. Compared with either agent alone, a combination of fasudil and FR167653 was more effective for the improvement of myocardial damage, inflammation and oxidative stress.
Conclusion: These findings suggest that the Rho-kinase and p38 MAPK pathways may play a pivotal role in ventricular hypertrophy; thus, we obtained the first evidence that a combination of Rho-kinase inhibitor and p38 MAPK inhibitor may provide a potential therapeutic target in hypertension with cardiovascular remodeling.