Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs

Biomaterials. 2012 Mar;33(7):2097-108. doi: 10.1016/j.biomaterials.2011.11.053. Epub 2011 Dec 14.

Abstract

The successful clinical outcome of the implanted tissue-engineered bone is dependent on the establishment of a functional vascular network. A gene-enhanced tissue engineering represents a promising approach for vascularization. Our previous study indicated that hypoxia-inducible factor-1α (HIF-1α) can up-regulate the expression of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1) in bone mesenchymal stem cells (BMSCs). The angiogenesis is a co-ordinated process that requires the participation of multiple angiogenic factors. To further explore the angiogenic effect of HIF-1α mediated stem cells, in this study, we systematically evaluated the function of HIF-1α in enhancing BMSCs angiogenesis in vitro and in vivo. A constitutively active form of HIF-1α (CA5) was inserted into a lentivirus vector and transduced into BMSCs, and its effect on vascularization and vascular remodeling was further evaluated in a rat critical-sized calvarial defects model with a gelatin sponge (GS) scaffold. The expression of the key angiogenic factors including VEGF, SDF-1, basic fibroblast growth factor (bFGF), placental growth factor (PLGF), angiopoietin 1 (ANGPT1), and stem cell factor (SCF) at both mRNAs and proteins levels in BMSCs were significantly enhanced by HIF-1α overexpression compared to the in vitro control group. In addition, HIF-1α-over expressing BMSCs showed dramatically improved blood vessel formation in the tissue-engineered bone as analyzed by photography of specimen, micro-CT, and histology. These data confirm the important role of HIF-1α in angiogenesis in tissue-engineered bone. Improved understanding of the mechanisms of angiogenesis may offer exciting therapeutic opportunities for vascularization, vascular remodeling, and bone defect repair using tissue engineering strategies in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Bone Marrow Cells / cytology
  • Bone Marrow Cells / physiology*
  • Bone and Bones / blood supply*
  • Bone and Bones / physiology
  • Cell Adhesion / physiology
  • Cells, Cultured
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Male
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / physiology*
  • Neovascularization, Physiologic / physiology*
  • Rats
  • Rats, Inbred F344
  • Tissue Engineering / methods*
  • Transduction, Genetic
  • X-Ray Microtomography

Substances

  • Biomarkers
  • Hypoxia-Inducible Factor 1, alpha Subunit