Improving immunity in the elderly: current and future lessons from nonhuman primate models

Age (Dordr). 2012 Oct;34(5):1157-68. doi: 10.1007/s11357-011-9353-y. Epub 2011 Dec 20.

Abstract

The immune system must overcome daily challenges from pathogens to protect the body from infection. The success of the immune response to infection relies on the ability to sense and evaluate microbial threats and organize their elimination, while limiting damage to host tissues. This delicate balance is achieved through coordinated action of the innate and adaptive arms of the immune system. Aging results in several structural and functional changes in the immune system, often described under the umbrella term "immune senescence". Age-related changes affect both the innate and adaptive arms of the immune system and are believed to result in increased susceptibility and severity of infectious diseases, which is further exacerbated by reduced vaccine efficacy in the elderly. Therefore, multiple strategies to improve immune function in the aged are being investigated. Traditionally, studies on immune senescence are conducted using inbred specific pathogen free (SPF) rodents. This animal model has provided invaluable insight into the mechanisms of aging. However, the limited genetic heterogeneity and the SPF status of this model restrict the successful transfer of immunological discoveries between murine models and the clinical setting. More recently, nonhuman primates (NHPs) have emerged as a leading translational model to investigate immune senescence and to test interventions aimed at delaying/reversing age-related changes in immune function. In this article, we review and summarize advances in immuno-restorative approaches investigated in the NHP model system and discuss where the NHP model can support the development of novel therapeutics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological*
  • Aging / immunology*
  • Animals
  • Disease Models, Animal
  • Immune System / physiology*
  • Infections / immunology*
  • Primates