The flow of polymer solutions is examined in a flow geometry where a jet is used to inject the viscoelastic solution into a cylindrical tube. We show that this geometry allows for the generation of a "turbulentlike" flow at very low Reynolds numbers with a fluctuation level which can be as high as 30%. The fluctuations increase with an increase in solution polymer concentration and flow velocity. The turbulent fluctuations decay downstream for small flow velocities but persist for high velocities. The statistical properties of the generated fluctuations indicate that this turbulentlike flow is different from previously studied flows displaying elastic turbulence and shows a direct cascade of energy to small scales with practically no intermittency.