We observe the formation in a single-photon transition of two core holes, each at a different carbon atom of the C2H2 molecule. At a photon energy of 770.5 eV, the probability of this 2-site core double ionization amounts to 1.6 ± 0.4% of the 1-site core double ionization. A simple theoretical model based on the knockout mechanism gives reasonable agreement with experiment. Spectroscopy and Auger decays of the associated double core hole states are also investigated.