Blood coagulation factor XIII (FXIII) is a tetrameric protein consisting of two catalytic A (FXIII-A) and two carrier/inhibitory B (FXIII-B) subunits. It is a zymogen, which becomes transformed into an active transglutaminase (FXIIIa) in the final phase of coagulation cascade by thrombin and Ca(2+). FXIII is essential for hemostasis, its deficiency results in severe bleeding diathesis. FXIIIa mechanically stabilizes fibrin by cross-linking its α-, and γ-chains. It also protects newly formed fibrin from fibrinolysis, primarily by cross-linking α(2)-plasmin inhibitor to fibrin. Beside the above prothrombotic effects, it is involved in limiting thrombus growth by down-regulating platelet adhesion to fibrin. Elevated FXIII level seems to be a gender-specific risk factor of both coronary artery disease and peripheral arterial disease, it represents an increased risk only in females. The association of FXIII level with the risk of ischemic stroke and venous thromboembolism was investigated only in a few studies from which no clear conclusion could be drawn. Among the FXIII subunit polymorphisms, concerning their effect on the risk of thrombotic diseases, only FXIII-A p.Val34Leu was investigated extensively. Meta-analyses of reported data suggest that this polymorphism provides a moderate protection against coronary artery disease and venous thromboembolism, but not against ischemic stroke. Gene-gene and gene-environmental interactions might modify its effect. Further studies are required to explore the effect of other FXIII subunit polymorphism on the risk of thrombotic diseases.
Copyright © 2011 Elsevier Ltd. All rights reserved.