Anatomical connectivity patterns predict face selectivity in the fusiform gyrus

Nat Neurosci. 2011 Dec 25;15(2):321-7. doi: 10.1038/nn.3001.

Abstract

A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure-function relationship discovered from the initial participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity was highly influential in predicting face selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping*
  • Choice Behavior / physiology*
  • Diffusion Magnetic Resonance Imaging
  • Face*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Oxygen / blood
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Regression Analysis
  • Visual Cortex / blood supply
  • Visual Cortex / physiology*
  • Visual Pathways / physiology*
  • Young Adult

Substances

  • Oxygen