We sought to identify novel urinary biomarkers of kidney function in type 2 diabetes. We screened the renal transcriptome of db/db and db/m mice for differentially expressed mRNA transcripts that encode secreted proteins with human orthologs. Whether elevated urine levels of the orthologous proteins correlated with diminished glomerular filtration rate was tested in a cross-sectional study of n = 56 patients with type 2 diabetes. We identified 36 putative biomarker genes in db/db kidneys: 31 upregulated and 5 downregulated. Urinary protein levels of six selected candidates (endothelin-1, lipocalin-2, transforming growth factor-β, growth and differentiation factor-15, interleukin-6, and macrophage chemoattractant protein-1) were elevated in type 2 diabetic patients with subnormal glomerular filtration rate (i.e., <90 ml·min(-1)·1.73 m(-2)), independent of microalbuminuria, age, sex, race, and use of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists. In contrast, urinary levels of fibroblast growth factor were not increased. A composite variable of urine albumin and any of the six candidate markers was associated with subnormal estimated glomerular filtration rate more closely than albumin alone. In addition, urinary endothelin-1, growth and differentiation factor-15, and interleukin-6 were associated with a marker of proximal tubule damage, N-acetyl-β-d-glucosaminidase activity. These results suggest that gene expression profiling in diabetic mouse kidney can complement existing proteomic-based approaches for renal biomarker discovery in humans.