3D dose reconstruction for narrow beams using ion chamber array measurements

Z Med Phys. 2012 Jun;22(2):123-32. doi: 10.1016/j.zemedi.2011.10.009. Epub 2011 Dec 30.

Abstract

3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.

MeSH terms

  • Equipment Design
  • Equipment Failure Analysis
  • Radiometry / instrumentation*
  • Radiotherapy Dosage
  • Radiotherapy, Conformal / instrumentation*
  • Reproducibility of Results
  • Sensitivity and Specificity