Enzymatic activity is necessary for thrombin-mediated increase in endothelial permeability

Am J Physiol. 1990 Oct;259(4 Pt 1):L270-5. doi: 10.1152/ajplung.1990.259.4.L270.

Abstract

alpha-Thrombin causes a dose-dependent increase in endothelial permeability as measured by the clearance rate of 125I-albumin across a monolayer of bovine pulmonary artery endothelial cells. We determined if an active catalytic site is necessary for the thrombin-mediated increase in endothelial permeability. alpha-Thrombin was reacted with 10-fold excess D-phenylalanyl-prolyl-arginine chloromethyl ketone (PPACK), an irreversible inhibitor that forms a covalent bond with thrombin's active site, producing an enzymatically inactive thrombin. PPACK completely inhibited the alpha-thrombin-mediated increase in 125I-albumin permeability. Similar results were obtained with gamma-thrombin, an enzymatically active alpha-thrombin form with an altered fibrinogen recognition domain. PPACK alone and the active site-inhibited PPACK-alpha-thrombin had no effect on permeability. Diisopropylphospho (DIP)-alpha-thrombin was effective only in very high concentrations (10(-6)M), and this effect was abolished by the addition of PPACK. These studies demonstrate that binding alone is insufficient for the thrombin-mediated increase in endothelial monolayer permeability. Thrombin's active catalytic site is a requirement for the increase in transendothelial albumin permeability.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Chloromethyl Ketones / pharmacology
  • Animals
  • Cell Line
  • Cell Membrane Permeability / drug effects*
  • Cells, Cultured
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / physiology*
  • Humans
  • Structure-Activity Relationship
  • Thrombin / pharmacology*

Substances

  • Amino Acid Chloromethyl Ketones
  • Thrombin
  • phenylalanyl-prolyl-arginine chloromethyl ketone-thrombin
  • phenylalanyl-prolyl-arginine-chloromethyl ketone