Diffractive arrays of silver nanocylinders are used to increase the radiative efficiency of InGaN/GaN quantum wells emitting at near-green wavelengths. Large enhancements in luminescence intensity (up to a factor of nearly 5) are measured when the array period exceeds the emission wavelength in the semiconductor material. The experimental results and related numerical simulations indicate that the underlying mechanism is a strong resonant coupling between the light-emitting excitons in the quantum wells and the plasmonic lattice resonances of the arrays. These excitations are particularly well suited to light-emission-efficiency enhancement, compared to localized surface plasmon resonances at similar wavelengths, due to their larger scattering efficiency and larger spatial extension across the sample area.
© 2012 Optical Society of America