KMnO4 is a powerful oxidizing agent which has been used to modify DNA bases. In previous studies, mild KMnO4 treatment has been shown to preferentially modify Thy; Cyt and Gua are modified only under harsher conditions to as yet unidentified products. In the present study, denatured plasmid pCMV beta gal DNA was exposed to 0.015-1.5 mM KMnO4, pH 8.6, at 4 degrees C for 5 min, after which the DNA was hydrolyzed in formic acid, trimethylsilylated, and analyzed for modified base content by gas chromatography-mass spectrometry/selected ion monitoring. KMnO4 treatment, even at concentrations as low as 0.015 mM, caused a concentration-dependent increase in the Thy products Thy glycol and 5-hydroxy-5-methylhydantoin, the Cyt products Cyt glycol, 5,6-dihydroxycytosine, and 5-hydroxyhydantoin, the Ade product 8-hydroxyadenine, and the Gua product 8-hydroxyguanine. The Ade product 4,6-diamino-5-formamidopyrimidine and the Gua product 2,6-diamino-4-hydroxy-5-formamidopyrimidine were minimally (less than or equal to 2-fold) increased by treatment with greater than or equal to 0.8 mM KMnO4. These data demonstrate that, in addition to Thy, Cyt, Gua, and Ade bases in plasmid DNA may be modified by treatment with KMnO4, even under mild conditions. They represent the first identification of Cyt, Gua, and Ade products caused by KMnO4 treatment. Furthermore, these data suggest that previous studies which have used treatment with KMnO4 to study the mutagenicity of Thy glycol specifically or as a Thy-specific probe in DNA structure should be interpreted with caution.