Background and purpose: Caffeic acid phenethyl ester (CAPE) is a component of honey bee propolis that can induce expression of haem oxygenase-1 (HO-1). Because HO-1 induction has been suggested to protect dopaminergic neurons in the substantia nigra, we examined the effect of CAPE in experimental models of dopaminergic neurodegeneration.
Experimental approach: Neuroprotective effect of CAPE was investigated in rat organotypic midbrain slice cultures and in vivo, using a mouse model of dopaminergic neurodegeneration induced by intranigral injection of LPS and intrastriatal injection of 6-hydroxydopamine.
Key results: CAPE protected dopaminergic neurons in slice cultures from IFN-γ/LPS-induced injury. The effect of CAPE was inhibited by zinc protoporphyrin IX, an HO-1 inhibitor, and by neutralizing antibody against brain-derived neurotrophic factor (BDNF). A p38 MAPK inhibitor SB203580 prevented activation of NF-E2-related factor 2, attenuated increased expression of HO-1 and BDNF, and blocked the neuroprotective actions of CAPE. In the LPS-injected mouse model, daily intraperitoneal administration of CAPE protected dopaminergic neurons, up-regulated HO-1 and BDNF, and reduced the increase of activated microglia/macrophages. Neuroprotective effects of CAPE against LPS-induced injury was prevented by zinc protoporphyrin IX or anti-BDNF antibody. CAPE protected dopaminergic neurons and alleviated methamphetamine-induced rotational behaviour also in 6-hydroxydopamine hemiparkinsonian mice.
Conclusion and implications: CAPE is a novel type of neuroprotective agent whose actions are mediated by both HO-1 and BDNF. These findings may provide novel clues to develop neuroprotective agents for treatment of neurodegenerative disorders.
© 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.