Circulating platelets are highly specialized cells produced by megakaryocytes (Mks) that participate in hemostatic and inflammatory functions. Despite their critical role little is known about the molecular mechanisms involved in their production from megakaryocytes, or about the pathogenesis of platelet disorders. Megakaryopoiesis occurs in a complex microenvironment within the bone marrow. The underlying relationships between Mk maturation and bone marrow components are key factors in this process. Mk interactions with extracellular matrices (ECM) via specific surface receptors control many functions, with chemistry, physical parameters and membrane elasticity as fundamental elements of the processes involved. Alteration of Mk-ECM interactions in the bone marrow environment may lead to pathophysiologic situations, such as myelofibrosis and congenital thrombocytopenia. Searching the mechanisms related to Mks-bone marrow environment interactions, will provide novel insight into fundamental control of Mk function, leading to new concepts in the study of Mk-related disease states and future modes for therapeutic inquiry.
Copyright © 2011 Elsevier Ltd. All rights reserved.