Methylphenidate (MPH) and atomoxetine (ATX) are effective medications in the treatment of attention deficit/hyperactivity disorder (ADHD). The aim of this study was to investigate differential effects of MPH and ATX on attentional functions at the performance and the neuronal level in children with ADHD. Using the Attention Network Test (ANT), differential effects of both medications on the noradrenergic alerting network and the dopaminergic executive attention network were considered. Nineteen children with ADHD performed the ANT three times while event-related potentials (ERPs) were recorded. The baseline testing was conducted without medication. In two medication blocks of 8 weeks each, medication was individually titrated for each child (cross-over design, balanced order). At the end of the medication blocks the testing was repeated. While both medications comparably reduced ADHD symptomatology, MPH had some advantages over ATX with regard to performance measures on the ANT and the underlying neuronal mechanisms. Compared with ATX, MPH led to a larger reduction in reaction time variability, which was accompanied by an MPH-related increase in the contingent negative variation (CNV) compared to the baseline testing. Contrary to our expectations, specific alerting network effects were not observed with ATX. Due to the chosen study design, it remains unresolved to what extent e.g. shortened reaction times and smaller conflict scores that were observed with both medications reflect practice or medication effects. The differential pattern of MPH vs. ATX effects on attentional functions in children with ADHD may be explained by the dopaminergic effects of MPH within the cortico-striato-thalamo-cortical circuit.
Copyright © 2011 Elsevier Inc. All rights reserved.