Escherichia coli (E. coli) is the most commonly used organism for expressing antibody fragments such as single chain antibody Fvs (scFvs). Previously, we have utilized E. coli to express well-folded scFvs for characterization and engineering purposes with the goal of using these engineered proteins as building blocks for generating IgG-like bispecific antibodies (BsAbs). In the study, described here, we observed a significant difference in the secondary structure of an scFv produced in E. coli and the same scFv expressed and secreted from chinese hamster ovary (CHO) cells as part of a BsAb. We devised a proteolytic procedure to separate the CHO-derived scFv from its antibody-fusion partner and compared its properties with those of the E. coli-derived scFv. In comparison to the CHO-derived scFv, the E. coli-derived scFv was found trapped in a misfolded, but monomeric state that was stable for months at 4 °C. The misfolded state bound antigen in a heterogeneous fashion that included non-specific binding, which made functional characterization challenging. This odd incidence of obtaining a misfolded scFv from bacteria suggests careful characterization of the folded properties of bacterially expressed scFvs is warranted if anomalous issues with antigen-binding or non-specificity occur during an engineering campaign. Additionally, our proteolytic methodology for obtaining significant levels of intact scFvs from highly expressed IgG-like antibody proteins serves as a robust method for producing scFvs in CHO without the use of designed cleavage motifs.
Copyright © 2011 Elsevier Inc. All rights reserved.