Sensitivity of a helical diode array device to delivery errors in IMRT treatment and establishment of tolerance level for pretreatment QA

J Appl Clin Med Phys. 2012 Jan 5;13(1):3660. doi: 10.1120/jacmp.v13i1.3660.

Abstract

The aim of this study is to determine the gantry angle and multileaf collimator (MLC) gap error-detection threshold of a diode helical array with an inserted micro-ionization chamber in order to use this device for the pretreatment quality assurance (QA) of intensity-modulated radiation therapy (IMRT) treatments. Implications on the dose-volume histograms (DVHs) of the patient treatments will also be considered for the establishment of a QA protocol with a reasonable tolerance level. Three dynamic IMRT HN (head and neck) and prostate treatments were studied. Random and systematic variations of gantry angle and systematic errors in MLC gap width of the clinical treatments were analyzed in order to establish the detection sensitivity of the array. The associated clinical significance was studied introducing the same errors in the treatment plan based on the patients' computed tomography (CT) and calculating the corresponding DVHs. The Gamma (3%/3 mm) presented a 4% variation in failure rate for a rotation error of 1° for both types of treatment. Both systematic and random errors in gantry rotation angle have little effect on the patients' DVHs. MLC gap width errors of 1 mm and 2 mm in the prostate treatments imply a mean variation in isocenter-measured absorbed dose of 2.1% and 4.1%, respectively. In the case of HN, these errors entail a change in measured isocenter dose of 4.7% and 8.6%, respectively. The variation observed in the DVHs of the patients was, basically, a global displacement of the curves proportional to the isocenter dose variation caused by the gap width error. According to the array sensitivity to the analyzed errors and its implication in patient DVHs, a tolerance of 95% point passing rate for the gamma criterion 3%/2 mm and an agreement of 2% in isocenter absolute dose have been established as tolerance criteria for our pretreatment IMRT QA protocol.

MeSH terms

  • Equipment Design
  • Equipment Failure Analysis
  • Humans
  • Neoplasms / radiotherapy*
  • Radiometry / instrumentation*
  • Radiotherapy Dosage
  • Radiotherapy, Conformal / instrumentation*
  • Semiconductors*