Potential-induced phase transition of low-index Au single crystal surfaces in propylene carbonate solution

Phys Chem Chem Phys. 2012 Feb 21;14(7):2286-91. doi: 10.1039/c2cp23171a. Epub 2012 Jan 12.

Abstract

In situ scanning tunneling microscopy (STM) was employed to examine the surface structures of Au(111), Au(100), and Au(110) single crystals in propylene carbonate (PC) containing tetrabutylammonium perchlorate (TBAP). All three electrodes exhibited potential-induced phase transition between the reconstructed and unreconstructed (1 × 1) structures at negative and positive potentials, respectively. The potential-induced phase transition of the Au electrode surfaces is attributed to the interaction of the TBA cation and the perchlorate anion at the electrode surface, which is similar to that which takes place in aqueous solutions. In addition to static atomic structures, dynamic processes of both the reconstruction and the lifting of the reconstruction were investigated by means of in situ STM. The lifting of reconstructed Au(111)-(√3 × 22) on Au(111) to the (1 × 1) structure is completed within 1 min at a positive potential. The diffusion of Au atoms on the Au(100) plane in the PC solution proceeds more rapidly than that in the aqueous solution, suggesting that the PC solvent plays an important role in accelerating the diffusion of Au atoms.