(Homo)glutathione deficiency impairs root-knot nematode development in Medicago truncatula

PLoS Pathog. 2012 Jan;8(1):e1002471. doi: 10.1371/journal.ppat.1002471. Epub 2012 Jan 5.

Abstract

Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aminobutyrates / metabolism
  • Animals
  • Gene Expression Regulation, Plant
  • Glutathione / analogs & derivatives*
  • Glutathione / biosynthesis
  • Glutathione / genetics
  • Glutathione / metabolism
  • Host-Parasite Interactions / physiology*
  • Medicago truncatula / genetics
  • Medicago truncatula / metabolism*
  • Medicago truncatula / parasitology*
  • Nematoda / physiology*
  • Plant Diseases / parasitology*
  • Plant Roots / genetics
  • Plant Roots / metabolism*
  • Plant Roots / parasitology*
  • Starch / genetics
  • Starch / metabolism

Substances

  • Aminobutyrates
  • homoglutathione
  • Starch
  • Glutathione