Fiber tracking in combination with functional MRI has recently attracted strong interest, as it may help to elucidate the structural basis for functional connectivities and may be selective in the determination of the fiber bundles responsible for a particular circuit. Diffusion spectrum imaging provides a more complex analysis of fiber circuits than the commonly used diffusion tensor imaging approach, also allowing the discrimination of crossing fibers in the brain. For the understanding of pathophysiological alterations during brain lesion and recovery, such studies need to be extended to small-animal models. In this article, we present the first study combining functional MRI with high-resolution diffusion spectrum imaging in vivo. We have chosen the well-characterized electrical forepaw stimulation paradigm in the rat to examine the thalamo-cortical pathway. Using the functionally activated areas in both thalamus and somatosensory cortex as seed and target regions for fiber tracking, we are able to characterize the fibers responsible for this stimulation pathway. Moreover, we show that the selection of the thalamic nucleus and primary somatosensory cortex on the basis of anatomical description results in a larger fiber bundle, probably encompassing connectivities between the thalamus and other areas of the somatosensory cortex, such as the hindpaw and large barrel field cortex.
Copyright © 2012 John Wiley & Sons, Ltd.