We present a method for detecting and studying neoplasia-specific functional and structural features through the combination of in vivo dynamic imaging, in silico modeling and global sensitivity analysis. We particularly present the case of cervical epithelium interacting with acetic acid solution, which is employed as an optical biomarker. The in vivo measured dynamic scattering characteristics are strongly correlated with the output of the biomarker's pharmacokinetic model that we have developed. Model global sensitivity analysis has shown that the measured/modeled bio-optical processes can be used for probing, in vivo, the number of neoplastic layers, the extracellular pH, the intracellular buffering efficiency and the size of the extracellular space.