Atrial fibrillation (AF) is a progressive arrhythmia which causes time dependent impairing of the cardiac muscle. This makes that proper therapeutic interventions depend on the degree of AF progression, i.e., on the temporal decrease of the organization of the electrical patterns observed during AF. Standard effective treatments are still lacking nowadays, and this calls for suitable noninvasive analysis of AF. In this sense, an appropriate therapy relies on the knowledge of AF characteristics, as its degree of organization. To this purpose, fast and accurate imaging of cardiac electrical activity can be helpful. Relying on the results of previous work on noninvasive assessment of the complexity of AF, we put forward a method to obtain visual maps of the topographic projection of the main atrial activity (AA) component given by principal component analysis, which is shown to provide detailed information about AA potential pattern distributions on the body surface. Different AA potential pattern distributions can then be identified, depending on the underlying degree of AF organization. An automated way to assess AF organization degree is then proposed, based on topographic projections. Similarities with previous studies suggest its usefulness for determining uniform distributions in the activation patterns on the body surface.