The aim of the present study was to develop an oil-free o/w microemulsion, composed of pluronic F68, propylene glycol and saline, which solubilized poorly soluble anesthetic drug propofol for intravenous administration. The ternary diagram was constructed to identify the regions of microemulsions, and the optimal composition of microemulsion was determined by in vitro evaluation such as globule size upon dilution and rheology. The droplet size of the diluent emulsion corresponding to oil-in-water type ranged from 200 to 300nm in diameter. Stability analysis of the microemulsions indicated that they were stable upon storage for at least 6 months. Hemolysis percent of propofol microemulsions was lower than that of commercial lipid emulsion (CLE) at 4h. Acute toxicity test showed that median lethal dose of propofol microemulsion was the same as that of CLE. No significant difference in time for unconsciousness and recovery of righting reflex was observed between the prepared microemulsions and CLE. In conclusion, microemulsion would be a promising intravenous delivery system for propofol.
Copyright © 2012 Elsevier B.V. All rights reserved.