Development of a new flow reactor for kinetic studies. Application to the ozonolysis of a series of alkenes

J Phys Chem A. 2012 Jun 21;116(24):6169-79. doi: 10.1021/jp211480x. Epub 2012 Feb 10.

Abstract

A new flow reactor has been developed to study ozonolysis reactions at ambient pressure and room temperature (297 ± 2 K). The reaction kinetics of O(3) with 4-methyl-1-pentene (4M1P), 2-methyl-2-pentene (2M2P), 2,4,4-trimethyl-1-pentene (tM1P), 2,4,4-trimethyl-2-pentene (tM2P) and α-pinene have been investigated under pseudo-first-order conditions. Absolute measurements of the rate coefficients have been carried out by recording O(3) consumption in excess of organic compound. Alkene concentrations have been determined by sampling adsorbent cartridges that were thermodesorbed and analyzed by gas-chromatography coupled to flame ionization detection. Complementary experimental data have been obtained using a 250 L Teflon smog chamber. The following ozonolysis rate coefficients can be proposed (in cm(3) molecule(-1) s(-1)): k(4M1P) = (8.23 ± 0.50) × 10(-18), k(2M2P) = (4.54 ± 0.96) × 10(-16), k(tM1P) = (1.48 ± 0.11) × 10(-17), k(tM2P) = (1.25 ± 0.10) × 10(-16), and k(α-pinene) = (1.29 ± 0.16) × 10(-16), in very good agreement with literature values. The products of tM2P ozonolysis have been investigated, and branching ratios of (21.4 ± 2.8)% and (73.9 ± 7.3)% have been determined for acetone and 2,2-dimethyl-propanal, respectively. Additionally, a new nonoxidized intermediate, 2-methyl-1-propene, has been identified and quantified. A topological SAR analysis was also performed to strengthen the consistency of the kinetic data obtained with this new flow reactor.