Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae)

Mol Phylogenet Evol. 2012 May;63(2):305-26. doi: 10.1016/j.ympev.2011.12.022. Epub 2012 Jan 21.

Abstract

Euphorbia is among the largest genera of angiosperms, with about 2000 species that are renowned for their remarkably diverse growth forms. To clarify phylogenetic relationships in the genus, we used maximum likelihood, bayesian, and parsimony analyses of DNA sequence data from 10 markers representing all three plant genomes, averaging more than 16kbp for each accession. Taxon sampling included 176 representatives from Euphorbioideae (including 161 of Euphorbia). Analyses of these data robustly resolve a backbone topology of four major, subgeneric clades--Esula, Rhizanthium, Euphorbia, and Chamaesyce--that are successively sister lineages. Ancestral state reconstructions of six reproductive and growth form characters indicate that the earliest Euphorbia species were likely woody, non-succulent plants with helically arranged leaves and 5-glanded cyathia in terminal inflorescences. The highly modified growth forms and reproductive features in Euphorbia have independent origins within the subgeneric clades. Examples of extreme parallelism in trait evolution include at least 14 origins of xeromorphic growth forms and at least 13 origins of seed caruncles. The evolution of growth form and inflorescence position are significantly correlated, and a pathway of evolutionary transitions is supported that has implications for the evolution of Euphorbia xerophytes of large stature. Such xerophytes total more than 400 species and are dominants of vegetation types throughout much of arid Africa and Madagascar.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • Biological Evolution
  • Euphorbia* / anatomy & histology
  • Euphorbia* / classification
  • Euphorbia* / genetics
  • Evolution, Molecular
  • Genetic Markers
  • Genome, Plant
  • Molecular Sequence Data
  • Phylogeny*
  • Plant Leaves / anatomy & histology*
  • Seeds / anatomy & histology*
  • Seeds / genetics*
  • Sequence Analysis, DNA

Substances

  • Genetic Markers