This study describes the release of antioxidant ferulic acid from wheat and triticale brans by mixtures of extracellular enzymes produced in culture by a strain FC007 of Alternaria alternata, a dark mold originally isolated from Canadian wood log. The genus of the mold was confirmed as Alternaria by 18S ribosomal DNA characterization. Enzyme activities for feruloyl esterase (FAE) and polysaccharide hydrolyzing enzymes were measured, and conditions for release of ferulic acid and reducing sugars from the mentioned brans were evaluated. The highest level of FAE activity (89 ± 7 mU ml(-1) fermentation culture) was obtained on the fifth day of fermentation on wheat bran as growth substrate. Depending on biomass and processing condition, up to 91.2 or 72.3% of the ferulic acid was released from wheat bran and triticale bran, respectively, indicating the proficiency of A. alternata extracellular enzymes in plant cell wall deconstruction. The apparent high extraction of ferulic acid from wheat and triticale brans represents a potential advantage of using a whole fungal cell enzyme complement over yields reported previously through an artificial assembly of cloned FAE with a particular xylanase in a cocktail format.
Keywords: Antioxidant; Feruloyl esterase; Fungal diversity; Phenolics; Plant cell wall degrading enzymes; Wheat and triticale brans.