We attempted to dope poly(3-hexylthiophene) (P3HT) with 2-ethylbenzenesulfonic acid (EBSA), which has good solubility in organic solvents, in order to improve the performance of organic field effect transistors (OFET). The EBSA doping ratio was varied up to 1.0 wt % because the semiconducting property of P3HT could be lost by higher level doping. The doping reaction was confirmed by the emerged absorption peak at the wavelength of ~970 nm and the shifted S2p peak (X-ray photoelectron spectroscopy), while the ionization potential and nanostructure of P3HT films was slightly affected by the EBSA doping. Interestingly, the EBSA doping delivered significantly improved hole mobility because of the greatly enhanced drain current of OFETs by the presence of the permanently charged parts in the P3HT chains. The hole mobility after the EBSA doping was increased by the factor of 55-86 times depending on the regioregularity at the expense of low on/off ratio in the case of unoptimized devices, while the optimized devices showed ~10 times increased hole mobility by the 1.0 wt % EBSA doping with the greatly improved on/off ratio even though the source and drain electrodes were made using relatively cheaper silver instead of gold.
© 2012 American Chemical Society