Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism

New Phytol. 2012 Apr;194(2):430-439. doi: 10.1111/j.1469-8137.2012.04052.x. Epub 2012 Feb 1.

Abstract

The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Deoxy-7-Phosphoheptulonate Synthase / metabolism*
  • Arabidopsis / drug effects
  • Arabidopsis / genetics*
  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Escherichia coli / drug effects
  • Escherichia coli / enzymology*
  • Feedback, Physiological* / drug effects
  • Flowers / drug effects
  • Flowers / genetics
  • Gas Chromatography-Mass Spectrometry
  • Gene Expression / drug effects
  • Gene Expression Regulation, Plant / drug effects
  • Lignin / metabolism
  • Metabolic Networks and Pathways* / drug effects
  • Plant Stems / drug effects
  • Plant Stems / genetics
  • Plants, Genetically Modified
  • Principal Component Analysis
  • Shikimic Acid / metabolism*
  • Tryptophan / analogs & derivatives
  • Tryptophan / pharmacology

Substances

  • 5-methyltryptophan
  • Shikimic Acid
  • Tryptophan
  • Lignin
  • 3-Deoxy-7-Phosphoheptulonate Synthase