Objectives: The purpose of this study was to investigate the clinical usage of Virtual Touch tissue quantification (VTQ; Siemens Medical Solutions, Mountain View, CA) implementing sonographic acoustic radiation force impulse technology for differentiation between benign and malignant solid breast masses.
Methods: A total of 143 solid breast masses were examined with VTQ, and their shear wave velocities (SWVs) were measured. From all of the masses, 30 were examined by two independent operators to evaluate the reproducibility of the results of VTQ measurement. All masses were later surgically resected, and the histologic results were correlated with the SWV results. A receiver operating characteristic curve was calculated to assess the diagnostic performance of VTQ.
Results: A total of 102 benign lesions and 41 carcinomas were diagnosed on the basis of histologic examination. The VTQ measurements performed by the two independent operators yielded a correlation coefficient of 0.885. Applying a cutoff point of 3.065 m/s, a significant difference (P < .001) was found between the SWVs of the benign (mean ± SD, 2.25 ± 0.59 m/s) and malignant (5.96 ± 2.96 m/s) masses. The sensitivity, specificity, and area under the receiver operating characteristic curve for the differentiation were 75.6%, 95.1%, and 85.6%, respectively. When the repeated non-numeric result X.XX of the SWV measurements was designated as an indicator of malignancy, the sensitivity, specificity, and accuracy were 63.4%, 100%, and 89.5%.
Conclusions: Virtual Touch tissue quantification can yield reproducible and quantitative diagnostic information on solid breast masses and serve as an effective diagnostic tool for differentiation between benign and malignant solid masses.