Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Although Human noroviruses are significant enteric pathogens, there exists no reliable vaccine or therapy to treat infected individuals. To date, attempts to cultivate Human noroviruses within the laboratory have met with little success; however, the related murine norovirus mouse norovirus 1 (MNV-1) has provided an ideal model system to study norovirus replication due to the ease with which the virus is cultivated and the ability to infect a small animal model with this virus. Previously we have identified the association between MNV-1 and components of the host secretory pathway and proposed a role for the viral open reading frame 1 proteins in the replication cycle. Here we describe for the first time a role for cytoskeletal components in early MNV-1 replication events. We show that the MNV-1 utilizes microtubules to position the replication complex adjacent to the microtubule organizing center. Chemical disruption of the microtubule network disperses the sites of MNV-1 replication throughout the cell and impairs production of viral protein and infectious virus. Furthermore, we demonstrate the ability of MNV-1 to redistribute acetylated tubulin to the replication complex and that this association is potentially mediated via the MNV-1 major structural protein, VP1. Transient expression of MNV-1 VP1 exhibited extensive colocalization with both α-tubulin and acetylated tubulin and was observed to alter the distribution of acetylated tubulin in transfected cells. This study highlights the role of the cytoskeleton in early virus replication events and demonstrates the importance of this interaction in establishing the intracellular location of MNV-1 replication complexes.