We synthesized and characterized a series of zwitterionic, acetate-terminated, quaternized amine diacyl lipids (AQ). These lipids have an inverted headgroup orientation as compared to naturally occurring phosphatidylcholine (PC) lipids; the cationic group is anchored at the membrane interface, while the anionic group extends into the aqueous phase. AQ lipids preferentially interact with highly polarizable anions (ClO(4)(-)) over less polarizable ions (Cl(-)), in accord with the Hofmeister series, as measured by the change in zeta potential of AQ liposomes. Conversely, AQ lipids have a weaker association with calcium than do PC lipids. The transition temperatures (Tm) of the AQ lipids are similar to the Tm observed with phosphatidylethanolamine (PE) lipids of the same chain length. AQ lipids form large lipid sheets after heating and sonication; however, in the presence of cholesterol (Chol), these lipids form stable liposomes that encapsulate carboxyfluorescein. The AQ:Chol liposomes retain their contents in the presence of serum at 37°C, and when injected intravenously into mice, their organ biodistribution is similar to that observed with PC:Chol liposomes. AQ lipids demonstrate that modulating the headgroup charge orientation significantly alters the biophysical properties of liposomes. For the drug carrier field, these new materials provide a non-phosphate containing zwitterlipid for the production of lipid vesicles.
Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.