Neurotoxic Aβ42 oligomers are believed to be the main cause of Alzheimer's disease. Previously, we found that the C-terminal fragments (CTFs), Aβ(30-42) and Aβ(31-42) were the most potent inhibitors of Aβ42 oligomerization and toxicity in a series of Aβ(x-42) peptides (x=28-39). Therefore, we chose these peptides as leads for further development. These CTFs are short (12-13 amino acids) hydrophobic peptides with limited aqueous solubility. Our first attempt to attach hydrophilic groups to the N terminus resulted in toxic peptides. Therefore, we next incorporated N-methyl amino acids, which are known to increase the solubility of such peptides by disrupting the β-sheet formation. Focusing on Aβ(31-42), we used a two-step N-methyl amino acid substitution strategy to study the structural factors controlling inhibition of Aβ42-induced toxicity. First, each residue was substituted by N-Me-alanine (N-Me-A). In the next step, in positions where substitution produced a significant effect, we restored the original side chain. This strategy allowed exploring the role of both side chain structure and N-Me substitution in inhibitory activity. We found that the introduction of an N-Me amino acid was an effective way to increase both the aqueous solubility and the inhibitory activity of Aβ(31-42). In particular, N-Me amino acid substitution at position 9 or 11 increased the inhibitory activity relative to the parent peptide. The data suggest that inhibition of Aβ42 toxicity by short peptides is highly structure-specific, providing a basis for the design of new peptidomimetic inhibitors with improved activity, physicochemical properties, and metabolic stability.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.