Thiazolidinedione treatment decreases oxidative stress in spontaneously hypertensive heart failure rats through attenuation of inducible nitric oxide synthase-mediated lipid radical formation

Diabetes. 2012 Mar;61(3):586-96. doi: 10.2337/db11-1091. Epub 2012 Feb 7.

Abstract

The current study was designed to test the hypothesis that inducible nitric oxide synthase (iNOS)-mediated lipid free radical overproduction exists in an insulin-resistant rat model and that reducing the accumulation of toxic metabolites is associated with improved insulin signaling and metabolic response. Lipid radical formation was detected by electron paramagnetic resonance spectroscopy with in vivo spin trapping in an obese rat model, with or without thiazolidinedione treatment. Lipid radical formation was accompanied by accumulation of toxic end products in the liver, such as 4-hydroxynonenal and nitrotyrosine, and was inhibited by the administration of the selective iNOS inhibitor 1400 W. The model showed impaired phosphorylation of the insulin signaling pathway. Ten-day rosiglitazone injection not only improved the response to an oral glucose tolerance test and corrected insulin signaling but also decreased iNOS levels. Similar to the results with specific iNOS inhibition, thiazolidinedione dramatically decreased lipid radical formation. We demonstrate a novel mechanism where a thiazolidinedione treatment can reduce oxidative stress in this model through reducing iNOS-derived lipid radical formation. Our results suggest that hepatic iNOS expression may underlie the accumulation of lipid end products and that reducing the accumulation of toxic lipid metabolites contributes to a better redox status in insulin-sensitive tissues.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehydes / metabolism
  • Animals
  • Body Composition
  • Free Radicals / metabolism
  • Glucose Intolerance
  • Heart Failure / metabolism*
  • Hypertension / complications*
  • Insulin Resistance
  • Lipid Peroxidation*
  • Liver / metabolism
  • Male
  • Muscle, Skeletal / metabolism
  • Nitric Oxide Synthase Type II / antagonists & inhibitors
  • Nitric Oxide Synthase Type II / physiology*
  • Nitrites / metabolism
  • Oxidative Stress / drug effects*
  • Rats
  • Rats, Inbred SHR
  • Rats, Inbred WKY
  • Thiazolidinediones / pharmacology*
  • Tyrosine / analogs & derivatives
  • Tyrosine / metabolism

Substances

  • Aldehydes
  • Free Radicals
  • Nitrites
  • Thiazolidinediones
  • 3-nitrotyrosine
  • Tyrosine
  • Nitric Oxide Synthase Type II
  • 4-hydroxy-2-nonenal