The worldwide dissemination of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae is a major concern in both hospital and community settings. Rapid identification of these resistant pathogens and the genetic determinants they possess is needed to assist in clinical practice and epidemiological studies. A collection of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis isolates, including phenotypically ESBL-positive (n = 1,093) and ESBL-negative isolates (n = 59), obtained in 2008-2009 from a longitudinal surveillance study (SMART) was examined using an in vitro nucleic acid-based microarray. This approach was used to detect and identify bla(ESBL) (bla(SHV), bla(TEM), and bla(CTX-M) genes of groups 1, 2, 9, and 8/25) and bla(KPC) genes and was combined with selective PCR amplification and DNA sequencing for complete characterization of the bla(ESBL) and bla(KPC) genes. Of the 1,093 phenotypically ESBL-positive isolates, 1,041 were identified as possessing at least one bla(ESBL) gene (95.2% concordance), and 59 phenotypically ESBL-negative isolates, used as negative controls, were negative. Several ESBL variants of bla(TEM) (n = 5), bla(SHV) (n = 11), bla(CTX-M) (n = 19), and bla(KPC) (n = 3) were detected. A new bla(SHV) variant, bla(SHV-129), and a new bla(KPC) variant, bla(KPC-11), were also identified. The most common bla genes found in this study were bla(CTX-M-15), bla(CTX-M-14), and bla(SHV-12). Using nucleic acid microarrays, we obtained a "molecular snapshot" of bla(ESBL) genes in a current global population; we report that CTX-M-15 is still the dominant ESBL and provide the first report of the new β-lactamase variants bla(SHV-129) and bla(KPC-11).