A recent paradigm shift in microbiology affects orthopaedic surgery and most other medical and dental disciplines because more than 65% of bacterial infections treated by clinicians in the developed world are now known to be caused by organisms growing in biofilms. These slime-enclosed communities of bacteria are inherently resistant to host defenses and to conventional antibacterial therapy, and these device-related and other chronic bacterial infections are unaffected by the vaccines and antibiotics that have virtually eliminated acute infections caused by planktonic (floating) bacteria. We examine the lessons that can be learned, within this biofilm paradigm, by the study of problems (e.g. non-culturability) shared by all biofilm infections and by the study of new therapeutic options aimed specifically at sessile bacteria in biofilms. Orthopaedic surgery has deduced some of the therapeutic strategies based on assiduous attention to patient outcomes, but much can still be learned by attention to modern research in related disciplines in medicine and dentistry. These perceptions will lead to practical improvements in the detection, management, and treatment of infections in orthopaedic surgery.