Kinetic analysis of the bypass of a bulky DNA lesion catalyzed by human Y-family DNA polymerases

Chem Res Toxicol. 2012 Mar 19;25(3):730-40. doi: 10.1021/tx200531y. Epub 2012 Feb 21.

Abstract

1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dG(AP)). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolι), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dG(AP) on a synthetic DNA template but that hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dG(AP) sites (t(50)(bypass)) encountered by hPolη, hPolκ, and hPolι was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dG(AP) (hPolη > hPolκ > hPolι ≫ hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dG(AP) efficiently, replication by both hPolκ and hPolι was strongly stalled at the lesion site and at a site immediately downstream from dG(AP). By employing presteady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dG(AP)in vivo is catalyzed by a human Y-family DNA polymerase, e.g., hPolη, the process is certainly mutagenic.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • DNA Damage*
  • DNA-Directed DNA Polymerase / metabolism*
  • Humans
  • Kinetics
  • Nucleotides / metabolism

Substances

  • Nucleotides
  • DNA-Directed DNA Polymerase