TaO(x)-based memristors have recently demonstrated both subnanosecond resistance switching speeds and very high write/erase switching endurance. Here we show that the physical state variable that enables these properties is the oxygen concentration in a conduction channel, based on the measurement of the thermal coefficient of resistance of different TaO(x) memristor states and a set of reference Ta-O films of known composition. The continuous electrical tunability of the oxygen concentration in the channel, with a resolution of a few percent, was demonstrated by controlling the write currents with a one transistor-one memristor (1T1M) circuit. This study demonstrates that solid-state chemical kinetics is important for the determination of the electrical characteristics of this relatively new class of device.
© 2012 American Chemical Society