Perioperative plasma F(2)-Isoprostane levels correlate with markers of impaired ventilation in infants with single-ventricle physiology undergoing stage 2 surgical palliation on the cardiopulmonary bypass

Pediatr Cardiol. 2012 Apr;33(4):562-8. doi: 10.1007/s00246-012-0166-2. Epub 2012 Feb 12.

Abstract

Cardiopulmonary bypass (CPB) produces inflammation and oxidative stress, which contribute to postoperative complications after cardiac surgery. F(2)-Isoprostanes (F(2)-IsoPs) are products of lipid oxidative injury and represent the most accurate markers of oxidative stress. In adults undergoing cardiac surgery, CPB is associated with elevated IsoPs. The relationship between F(2)-IsoPs and perioperative end-organ function in infants with single-ventricle physiology, however, has not been well studied. This study prospectively enrolled 20 infants (ages 3-12 months) with univentricular physiology undergoing elective stage 2 palliation (bidirectional cavopulmonary anastomosis). Blood samples were collected before the surgical incision (T0), 30 min after initiation of CPB (T1), immediately after separation from CPB (T2), and 24 h postoperatively (T3). Plasma F(2)-IsoP levels were measured at each time point and correlated with indices of pulmonary function and other relevant clinical variables. Plasma F(2)-IsoPs increased significantly during surgery, with highest levels seen immediately after separation from CPB (p < 0.001). After separation from CPB, increased F(2)-IsoP was associated with lower arterial pH (ρ = -0.564; p = 0.012), higher partial pressure of carbon dioxide (PaCO(2); ρ = 0.633; p = 0.004), and decreased lung compliance (ρ = -0.783; p ≤ 0.001). After CPB, F(2)-IsoPs did not correlate with duration of CPB, arterial lactate, or immediate postoperative outcomes. In infants with single-ventricle physiology, CPB produces oxidative stress, as quantified by elevated F(2)-IsoP levels. Increased F(2)-IsoP levels correlated with impaired ventilation in the postoperative period. The extent to which F(2)-IsoPs and other bioactive products of lipid oxidative injury might predict or contribute to organ-specific stress warrants further investigation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Biomarkers / blood
  • Cardiopulmonary Bypass*
  • F2-Isoprostanes / blood*
  • Follow-Up Studies
  • Heart Bypass, Right / adverse effects
  • Heart Bypass, Right / methods*
  • Heart Defects, Congenital / blood*
  • Heart Defects, Congenital / physiopathology
  • Heart Defects, Congenital / surgery
  • Heart Ventricles / abnormalities*
  • Heart Ventricles / surgery
  • Humans
  • Infant
  • Mass Spectrometry
  • Oxidative Stress
  • Palliative Care / methods*
  • Perioperative Period
  • Prognosis
  • Prospective Studies
  • Respiratory Function Tests
  • Respiratory Insufficiency / blood*
  • Respiratory Insufficiency / etiology
  • Respiratory Insufficiency / physiopathology

Substances

  • Biomarkers
  • F2-Isoprostanes