Pulmonary particulate matter (PM) exposure has been epidemiologically associated with an increased risk of cardiovascular morbidity and mortality, but the mechanistic foundations for this association are unclear. Exposure to certain types of PM causes changes in the vascular reactivity of several macrovascular segments. However, no studies have focused upon the systemic microcirculation, which is the primary site for the development of peripheral resistance and, typically, the site of origin for numerous pathologies. Ultrafine PM--also referred to as nanoparticles, which are defined as ambient and engineered particles with at least one physical dimension less than 100 nm (Oberdorster et al. 2005)--has been suggested to be more toxic than its larger counterparts by virtue of a larger surface area per unit mass. The purpose of this study was fourfold: (1) determine whether particle size affects the severity of postexposure microvascular dysfunction; (2) characterize alterations in microvascular nitric oxide (NO) production after PM exposure; (3) determine whether alterations in microvascular oxidative stress are associated with NO production, arteriolar dysfunction, or both; and (4) determine whether circulating inflammatory mediators, leukocytes, neurologic mechanisms, or a combination of these play a fundamental role in mediating pulmonary PM exposure and peripheral microvascular dysfunction. To achieve these goals, we created an inhalation chamber that generates stable titanium dioxide (TiO2) aerosols at concentrations up to 20 mg/m3. TiO2 is a well-characterized particle devoid of soluble metals. Sprague Dawley and Fischer 344 (F-344) rats were exposed to fine or nano-TiO2 PM (primary count modes of approximately 710 nm and approximately 100 nm in diameter, respectively) at concentrations of 1.5 to 16 mg/m3 for 4 to 12 hours to produce pulmonary loads of 7 to 150 microg in each rat. Twenty-four hours after pulmonary exposure, the following procedures were performed: the spinotrapezius muscle was prepared for in vivo microscopy, blood samples were taken from an arterial line, and various tissues were harvested for histologic and immunohistochemical analyses. Some rats received a bolus dose of cyclophosphamide 3 days prior to PM exposure to deplete circulating neutrophils and bronchoalveolar lavage (BAL) was performed in separate groups of rats exposed to identical TiO2 loads. No significant differences in BAL fluid composition based on PM size or load were found in these rats. Plasma levels of interleukin (IL)-2, IL-18, IL-13, and growth-related oncogene (GRO) (also known as keratinocyte-derived-chemokine [KC]) were altered after PM exposure. In rats exposed to fine TiO2, endothelium-dependent arteriolar dilation was significantly decreased, and this dysfunction was robustly augmented in rats exposed to nano-TiO2. This effect was not related to an altered smooth-muscle responsiveness to NO because arterioles in both groups dilated comparably in response to the NO donor sodium nitroprusside (SNP). Endogenous microvascular NO production was similarly decreased after inhalation of either fine or nano-TiO2 in a dose-dependent manner. Microvascular oxidative stress was significantly increased among both exposure groups. Furthermore, treatment with antioxidants (2,2,6,6-tetramethylpiperdine-N-oxyl [TEMPOL] plus catalase), the myeloperoxidase (MPO) inhibitor 4-aminobenzoic hydrazide (ABAH), or the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) inhibitor apocynin partially restored NO production and normalized arteriolar function in both groups. Neutrophil depletion restored dilation in PM-exposed rats by as much as 42%. Coincubation of the spinotrapezius muscle with the fast sodium (Na+) channel antagonist tetrodotoxin (TTX) restored arteriolar dilation by as much as 54%, suggesting that sympathetic neural input may be affected by PM exposure. The results of these experiments indicate that (1) the size of inhaled PM dictates the intensity of systemic microvascular dysfunction; (2) this arteriolar dysfunction is characterized by a decreased bioavailability of endogenous NO; (3) the loss of bioavailable NO after PM exposure is at least partially caused by elevations in local oxidative stress, MPO activity, NADPH oxidase activity, or a combination of these responses; and (4) circulating neutrophils and sympathetic neurogenic mechanisms also appear to be involved in the systemic microvascular dysfunction that follows PM exposure. Taken together, these mechanistic studies support prominent hypotheses that suggest peripheral vascular effects associated with PM exposure are due to the activation of inflammatory mechanisms, neurogenic mechanisms, or both.