We report the use of a high-refractive-index aplanatic solid immersion lens (ASIL) in total internal reflection fluorescence (TIRF) microscopy. This new solid immersion total internal reflection fluorescence (SITIRF) microscopy allows highly confined surface imaging with a significantly reduced imaging depth compared with conventional TIRF microscopy. We explore the application of a high refractive index, low optical dispersion material zirconium dioxide in the SITIRF microscope and also introduce a novel system design which enables the SITIRF microscope to work either in the epi-fluorescence or TIRF modes with variable illumination angles. We use both synthetic and biological samples to demonstrate that the imaging depth in the SITIRF microscope can be confined to a few tens of nanometers. SITIRF microscopy has the advantages of performing highly selective imaging and high-resolution high-contrast imaging. Potential applications in biological imaging and future developments of SITIRF microscopy are proposed.