Extensive and continuous duplication facilitates rapid evolution and diversification of gene families

Mol Biol Evol. 2012 Aug;29(8):2019-29. doi: 10.1093/molbev/mss068. Epub 2012 Feb 15.

Abstract

The origin of novel gene functions through gene duplication, mutation, and natural selection represents one of the mechanisms by which organisms diversify and one of the possible paths leading to adaptation. Nonetheless, the extent, role, and consequences of duplications in the origins of ecological adaptations, especially in the context of species interactions, remain unclear. To explore the evolution of a gene family that is likely linked to species associations, we investigated the evolutionary history of the A-superfamily of conotoxin genes of predatory marine cone snails (Conus species). Members of this gene family are expressed in the venoms of Conus species and are presumably involved in predator-prey associations because of their utility in prey capture. We recovered sequences of this gene family from genomic DNA of four closely related species of Conus and reconstructed the evolutionary history of these genes. Our study is the first to directly recover conotoxin genes from Conus genomes to investigate the evolution of conotoxin gene families. Our results revealed a phenomenon of rapid and continuous gene turnover that is coupled with heightened rates of evolution. This continuous duplication pattern has not been observed previously, and the rate of gene turnover is at least two times higher than estimates from other multigene families. Conotoxin genes are among the most rapidly evolving protein-coding genes in metazoans, a phenomenon that may be facilitated by extensive gene duplications and have driven changes in conotoxin functions through neofunctionalization. Together these mechanisms led to dramatically divergent arrangements of A-superfamily conotoxin genes among closely related species of Conus. Our findings suggest that extensive and continuous gene duplication facilitates rapid evolution and drastic divergence in venom compositions among species, processes that may be associated with evolutionary responses to predator-prey interactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Sequence
  • Bayes Theorem
  • Conotoxins / genetics
  • Evolution, Molecular*
  • Gene Duplication / genetics*
  • Genetic Variation*
  • Multigene Family / genetics*
  • Phylogeny
  • Selection, Genetic
  • Time Factors

Substances

  • Conotoxins