The T-cell antigen receptor (TCR) regulates two signal transduction pathways: the phosphatidylinositol (PtdIns) and tyrosine kinase pathways. Stimulation of T cells with antigen or anti-TCR monoclonal antibodies induces an increase in inositol phosphates and diacylglycerol, the second messengers responsible for the mobilization of cytoplasmic free calcium and activation of protein kinase C-4. The TCR also activates a tyrosine kinase that is not intrinsic to the TCR. The relationship between these two signal transduction pathways and their contribution to later T-cell responses is unclear. Studies using variants of a murine hybridoma suggested that the PtdIns pathway might not be necessary for or be involved in regulating interleukin-2 (IL-2) production. To address the relationship between later T-cell responses and the early biochemical signals, we investigated the ability of a heterologous receptor with defined signal transduction function to induce T-cell activation. The human muscarinic subtype-1 receptor (HM1), which elicits PtdIns metabolism in neuronal cells through a G protein-coupled mechanism, also functionally activates this pathway when expressed in the T-cell line Jurkat-derived host, J-HM1-2.2 (ref.8). We show here that stimulation of HM1 alone induced IL-2 production and IL-2 receptor alpha chain expression. HM1 does not induce the tyrosine kinase pathway, suggesting that this pathway does not directly influence later T cell-activation responses. Instead, our studies indicate that activation of the PtdIns pathway is probably sufficient to induce later T-cell responses.