A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID

Nature. 1990 Nov 1;348(6296):86-8. doi: 10.1038/348086a0.

Abstract

The gfa gene encodes glial fibrillary acidic protein, an intermediate filament protein expressed in glial cells. In vitro transcription analysis has shown that the human gfa promoter contains two initiation elements that can independently specify the transcription startpoint. One of the elements is a TATA box 25 base pairs (bp) upstream from the transcription startpoint; the other is located between 10 and 50 bp downstream from the transcription initiation site. We have now shown by transfection that both elements are required for efficient transcription in cultured cells. A partially purified natural human TATA box-binding factor (TFIID) from HeLa cells gave footprints that extended from upstream of the TATA box through the downstream initiator. Deletion of the downstream initiator inhibited both TFIID binding to the TATA box and transcription in vitro. In contrast to natural human TFIID, clone human and yeast TFIIDs expressed in bacteria gave footprints covering only the TATA box region, although hypersensitive sites were observed in the downstream region. The cloned TFIIDs also showed less dependence than natural human TFIID on the downstream initiator for both TATA box binding and in vitro transcription. These results suggest that natural human TFIID contains an additional component(s) that contribute(s) to stable TFIID binding and effective transcription by interacting with the downstream initiator.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Cloning, Molecular
  • Deoxyribonuclease I
  • Escherichia coli / genetics
  • Glial Fibrillary Acidic Protein / genetics*
  • Glioma
  • HeLa Cells
  • Humans
  • Molecular Sequence Data
  • Promoter Regions, Genetic / genetics
  • Saccharomyces cerevisiae / genetics
  • TATA Box / genetics
  • TATA Box / physiology*
  • Transcription Factor TFIID
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcription, Genetic*
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Glial Fibrillary Acidic Protein
  • Transcription Factor TFIID
  • Transcription Factors
  • Deoxyribonuclease I