Enthalpy-entropy compensation and cooperativity as thermodynamic epiphenomena of structural flexibility in ligand-receptor interactions

J Mol Biol. 2012 Apr 13;417(5):454-67. doi: 10.1016/j.jmb.2012.01.057. Epub 2012 Feb 7.

Abstract

Ligand binding is a thermodynamically cooperative process in many biochemical systems characterized by the conformational flexibility of the reactants. However, the contribution of conformational entropy to cooperativity of ligation needs to be elucidated. Here, we perform kinetic and thermodynamic analyses on a panel of cycle-mutated peptides, derived from influenza H3 HA(306-319), interacting with wild type and a mutant HLA-DR. We observe that, within a certain range of peptide affinity, this system shows isothermal entropy-enthalpy compensation (iEEC). The incremental increases in conformational entropy measured as disruptive mutations are added in the ligand or receptor are more than sufficient in magnitude to account for the experimentally observed lack of free-energy decrease cooperativity. Beyond this affinity range, compensation is not observed, and therefore, the ability of the residual interactions to form a stable complex decreases in an exponential fashion. Taken together, our results indicate that cooperativity and iEEC constitute the thermodynamic epiphenomena of the structural fluctuation that accompanies ligand-receptor complex formation in flexible systems. Therefore, ligand binding affinity prediction needs to consider how each source of binding energy contributes synergistically to the folding and kinetic stability of the complex in a process based on the trade-off between structural tightening and restraint of conformational mobility.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • HLA-DR Antigens / chemistry*
  • HLA-DR Antigens / genetics
  • HLA-DR Antigens / metabolism*
  • Hemagglutinin Glycoproteins, Influenza Virus / chemistry*
  • Hemagglutinin Glycoproteins, Influenza Virus / metabolism*
  • Kinetics
  • Ligands
  • Mutant Proteins / chemistry
  • Mutant Proteins / genetics
  • Mutant Proteins / metabolism
  • Protein Binding
  • Protein Conformation*
  • Thermodynamics*

Substances

  • HLA-DR Antigens
  • Hemagglutinin Glycoproteins, Influenza Virus
  • Ligands
  • Mutant Proteins