Metalloproteinases from snake venoms are often multi-domain enzymes involved in degradation of a variety of structural proteins. Hemorrhage and tissue necrosis are common manifestations of viperid envenomations in humans, largely due to the actions of prominent metalloproteinases, and envenomation by rear-fanged snakes may also cause hemorrhage. We purified the major metalloproteinase in Alsophis portoricensis (Puerto Rican Racer) venom through HPLC size exclusion and ion exchange chromatography. Named alsophinase, it is the first protein purified and characterized from the venom of Alsophis. Alsophinase is a single polypeptide chain protein, and based on mass, activity and complete inhibition by 1,10-phenanthroline, it is a class P-III snake venom member of the M12 ADAM family of metalloproteinases. Alsophinase has a molecular mass of 56.003kDa and an N-terminal sequence of QDTYLNAKKYIEFYLVVDNGMFxKYSxxFTV, with 67% sequence identity to a metalloproteinase isolated from venom of Philodryas olfersii (another rear-fanged species). Alsophinase rapidly catalyzed cleavage of only the Ala14-Leu15 bond of oxidized insulin B chain, had potent hemorrhagic activity in mice, and degraded only the α-subunit of human fibrinogen in vitro. Alsophinase is responsible for hemorrhagic and fibrinogenolytic activity of crude venom, and it may contribute to localized edema and ecchymosis associated with human envenomations by A. portoricensis. It may be more specific in peptide bond recognition than many well-characterized viperid P-III metalloproteinases, and it could have utility as a new protein fragmentation enzyme for mass spectrometry studies.
Copyright © 2012 Elsevier Masson SAS. All rights reserved.