Objective: The purpose of our study was to validate the ability of a new gas-cooled microwave device to secure antennas into tissue before ablation via shaft cooling and to verify that such cooling does not compromise the intended ablation.
Materials and methods: The force required to extract several types of applicators from ex vivo bovine liver before and after ablation was measured. Six groups were compared: cooled needle and multitined radiofrequency electrodes, secured and unsecured cryoprobes, and gas-cooled microwave antennas (n = 6 each). Ablations were next created in in vivo porcine livers for 2 and 10 minutes (n = 6 each) using the gas-cooled microwave system at 140 W. Extraction force was again measured before and after ablation and compared between groups using analysis of variance with post hoc Student t tests. Histologic analysis of the ablation zone was performed to evaluate cellular necrosis along the antenna shaft.
Results: Ex vivo, the secured cryoprobe and microwave antenna required significantly more force to remove than unsecured radiofrequency, cryoprobe, and microwave applicators (p < 0.05, all comparisons). The multitined radiofrequency electrode and cooled radiofrequency electrode required significantly more force to remove after ablation than before ablation (p = 0.006 and 0.02, respectively). In vivo, the secured antenna required significantly more force to remove before ablation than after ablation at both 2 (p < 0.0001) and 10 minutes (p < 0.0001). There was no histologic evidence of cell preservation along the antenna shaft.
Conclusion: The gas cooling used in this microwave device can effectively secure antennas into tissue without altering ablation shape or reducing the intended thermal damage.