Zwitterionic inverse-phosphocholine (iPC) lipids contain headgroups with an inverted charge orientation relative to phosphocholine (PC) lipids. The iPC lipid headgroup has a quaternary amine adjacent to the bilayer interface and a phosphate that extends into the aqueous phase. Neutral iPC lipids with ethylated phosphate groups (CPe) and anionic iPC lipids nonethylated phosphate groups (CP) were synthesized. The surface potential of CPe liposomes remains negative across a broad pH range and in the presence of up to 10 mM Ca(2+). CP liposomes aggregate in the presence of Ca(2+), but at a slower rate than other anionic lipids. Hydrolysis of CP lipids by alkaline phosphatases generates a cationic lipid. CPe liposomes release encapsulated anionic carboxyfluorescein (CF) 20 times faster than PC liposomes and release uncharged glucose twice as fast as PC liposomes. As such, iPC lipids afford a unique opportunity to investigate the biophysical and bioactivity-related ramifications of a charge inversion at the bilayer surface.